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Abstract— In this paper, a neural networks algorithm based on adaptive radial basis function (ARBF) is 
used to decompose the grid current drawn by nonlinear load, and the fundamental and harmonic 
components are estimated. The learning rate – considered as one of the most important parameters that 
govern the performance of the ARBF network - is investigated as well to reduce the system total error. Two 
methodologies are proposed to improve the estimation of the fundamental component of highly nonlinear 
current signal. One is based on fast Fourier transform (FFT) and the other is based on least mean square 
error (LMSE). The error between the reference signal and the reproduced signal (the sum of estimated 
fundamental and harmonic signals) is chosen as performance index. The obtained results unveil that both 
methodologies can be effective in enhancing the system accuracy, and that the proposed algorithm can 
provide better performance compared to the conventional RBF network. 
 
Keywords— Power quality; Radial basis function; Neural networks; Adaptive technique; Harmonic 
estimation. 
 

1. INTRODUCTION 

Most of the modern loads in the power system are nonlinear loads. These loads can 

inject both voltage and current harmonics in electric power grid. The unacceptable level 

of harmonics can cause several problems to the reliability of the grids and to the loads 

connected to the grid, such as overheating of motors and transformers, malfunctioning of 

protection equipment, insulation deterioration, and can interfere communication 

frequencies [1-3]. 

Several means were used to mitigate harmonics content in the electric grid such as 

passive power filters (PPFs) and active power filters (APFs). APFs have emerged as 

more effective technique to solve harmonics and other power quality problems [4–6]. 

The APF principle depends on sensing the voltage and/or current. Then, the voltage 

and/or current signal is decomposed into fundamental components and harmonic 

contents. Then, the APF utilizes and inverter circuit to compensate the harmonic contents 

and other power quality problems such as reactive power and unbalanced waveforms. 

The harmonics detection phase is a crucial phase for the success of the APFs 

compensation process. The literature has several harmonics detection methodologies. They 

can be classified into three main methodologies: frequency domain methodologies, time 

domain methodologies, and artificial intelligence (AI) methodologies [7–9]. In time 

domain methodologies as the attenuation of the filter is increased, the phase delay will 

increases and vice versa. Also, a fast transition time can lead to unacceptable oscillations 

[10, 11]. The frequency domain methodologies suffer from different problems, they are 

not considered real-time filters [10]. 
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Several AI techniques have been proposed to cope with the drawbacks of 

frequency domain and time domain techniques. The AI techniques can be categorized into 

three main approaches: adaptive linear neuron (ALN), back propagation (BP), and radial 

basis function (RBF) neural networks [12, 13]. The ALN technique is employed in online 

harmonics detection. The performance of ALN relies on the number of harmonics 

included in its topology. As the included number increases, the convergence of the ALN 

slows down and becomes prone to stuck in local minima [12, 13]. On the other hand, The BP 

networks handle the harmonics detection as a pattern recognition issue. It uses a 

supervised learning scheme. This scheme detects the harmonics content offline. It suffers 

from long training and the optimal solution is not guaranteed [14]. The radial basis 

function network (RBFN) has many advantages over ALN and BP networks, such as its 

capability to handle highly nonlinear systems, the training phase is much easier than 

other schemes and the nature of the activation functions can lead to better generalization 

[14]. Even though adaptive radial basis function (ARBF) has been used for harmonic 

detection, the number of hidden neurons is still large and still uses algorithms resemble 

to that in BP networks. This makes RBF networks exposed to the same back propagation 

network (BPN) drawbacks. 

An adaptive topology of the conventional RBF network was proposed in [15]. This 

adaptive RBF network adopts a weight change methodology based on least mean square 

error (LMSE). It shows improvement in estimation accuracy compared to the 

conventional RBF network. In [16], the authors study the stability constraints in the ARBF 

networks. Also, they proposed formula for optimal learning rates values, which ensure a 

minimum total error.  

In this paper, two methodologies to update the value of each ARBF network 

learning rates are explored. The goal of these methodologies is to improve the individual 

estimation of the fundamental component of highly nonlinear current signal. One is 

based on fast Fourier transform (FFT) and the other is based on LMSE. The proposed 

algorithms are used to estimate the fundamental component in highly nonlinear current 

signal. Section 2 illustrates adaptive RBF network. Section 3 illustrates how ARBF 

networks are used for harmonics estimation. Section 4 demonstrates the effects of 

updating the learning rates. Sections 5 and 6 include updating the weight vectors based 

on FFT and LMSE methods, respectively. 

2. ADAPTIVE RBF NETWORK 

Conventional BP and RBF networks have a main weakness; after the training phase 

is finished, the learned system parameters are fixed and cannot be changed. In the case of 

noisy signals, these locked parameters can lessen the effectiveness of the neural 

networks. The ARBF network algorithm was introduced to boost the performance of the 

conventional RBF networks after finishing the training phase and inserting the RBF 

network in the system. This adaptive algorithm allows the RBF networks to modify the 

parameters of the network after the training phase is finished. The centers and the 

weights are the RBF network tunable parameters that can influence the output. 
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Fig. 1 shows the general structure of the ARBF network. It has three main layers, as 

conventional feedforward neural networks: input layer, hidden layer and output layer. 

The network has two additional parts: i) Summation part that is positioned after the 

output layer, where the error signal is calculated at this part by summing the estimated 

(y) and the actual (R) signals and ii) weights updating part that aims to modify the 

weights between the hidden and the output layers to minimize the error signal. 
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Fig. 1. Structure of the ARBF network. 

 

If the input side (signal) has no noise δ(k), the algebraic sum of all outputs of the 

ARBF model will be the same as the reference signal R(k). In this condition, the error 

signal E(k) will be zero and there is no change in the ARBF weights as seen in Eq. (1). 

𝐸(𝑘) = 𝑅(𝑘) − {𝑦1(𝑘) + 𝑦2(𝑘) + ⋯ + 𝑦𝑚(𝑘)}                                                                             (1) 

If the input side is contaminated by noise, the jth node in the output layer of the 

ARBF will be impacted by the presence of noise as: 

𝑦𝑗(𝑘) = 𝑦𝑜𝑗(𝑘) + 𝛿𝑗(𝑘)                                                                                                                  (2) 

where 𝑦𝑜𝑗(𝑘) is the jth node in the output layer without noise and 𝛿𝑗(𝑘) is the additional 

error to the jth node because of the noise. The error E(k) in this condition has a value 

greater than zero. 

The ARBF can reduce the error’s impact on the performance. This is achieved by 

using the error E(k) to modify the weights vector between the hidden and output layer 

based on the LMSE algorithm [7] as: 

𝑤1𝑛𝑒𝑤 = 𝑤1old  + η1∅(𝑘)𝐸(𝑘)                                                                                                           (3) 

⋮ 

𝑤𝑚𝑛𝑒𝑤 = 𝑤𝑚𝑜𝑙𝑑 + η𝑚∅(𝑘)𝐸(𝑘)                                                                                                       (4) 
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where ηj is a regulation parameter for the jth node in the output layer. The weights 

parameter will be continuously updated till the error is minimized and reaches zero 

again. 

3. ARBF NETWORKS FOR HARMONICS ESTIMATION 

The ARBF network for harmonics estimation has two outputs: i) estimated 

fundamental component 𝑦𝑓 and ii) the estimated harmonic content 𝑦ℎ. These outputs are 

calculated as follows: 

𝑦ℎ(𝑘) = 𝑊ℎ𝛷(𝑘)                                                                                 (5) 

𝑦𝑓(𝑘) = 𝑊𝑓𝛷(𝑘)                                                                                   (6) 

The weights will be modified as follows: 

𝑊ℎ = 𝑊ℎ + ηℎ𝛷(𝑘)𝐸(𝑘)                                                                            (7) 

𝑊𝑓 = 𝑊𝑓 + η𝑓𝛷(𝑘)𝐸(𝑘)                                                                             (8) 

The weight vectors for the fundamental component and harmonics contents will be 

updated based on 𝜇𝑓 and 𝜇ℎ values. 𝜇𝑓 and 𝜇ℎ are crucial parameters and they will control 

convergence speed and system stability. The acceptable limits of η𝑓 and ηℎ values are 

determined by maximum eigenvalue 𝜆𝑚𝑎𝑥 of autocorrelation matrix, where 

𝑅 = 𝐸[𝛷(𝑘)𝛷𝐻(𝑘)]                                        (9) 

So, the range of any η should be as: 0 < η <
2

𝜆𝑚𝑎𝑥
 

The value of η can be written in terms of 𝜆𝑚𝑎𝑥 as: η = µ
1

𝜆𝑚𝑎𝑥
 

So, to maintain system stability, µ must be in the range 0 < µ < 2. 

The stability margin and the optimal value to minimize the error were discussed in 

details in our former paper [16]. It defined the range of 𝜂𝑓 and 𝜂ℎ that can ensure stable 

system. Also, it determined the optimal combination of 𝜂𝑓 and 𝜂ℎ that produces the 

minimum error which is: 

𝜂𝑓 + 𝜂ℎ = 1                                                                                                                              (10) 

which means that there are infinite individual values of 𝜂𝑓 and 𝜂ℎ that can give the 

minimum error, so the main aim in this paper is to set the value of each one of them to 

minimize the total error and to minimize the error in each of the fundamental and 

harmonics components. 

4. ANALYZING THE INDIVIDUAL VALUES OF WEIGHT VECTORS 

The reference signal from the circuit shown in Fig. 2 (solid-blue line) and the 

estimated signal using conventional RBF filter (dashed-red line) are shown in Fig. 2. The 

difference between them is obvious (the MSE between them is 1.4459e+004). In order to 

reduce the MSE and getting better estimation, the weighting vectors must be modified. 

The optimal value is 𝜂𝑓 + 𝜂ℎ =1 [16], and the MSE between the reference signal and 

estimated signal by ARBF network filter is now 3.2127e-015 and this is a significant 

reduction in the MSE value. The error between reference signal and estimated signal by 

conventional RBF (solid-blue line) and between reference signal and estimated signal by 

ARBF network (dashed-red line) are shown in Fig. 3. 
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Fig. 2. Reference signal (solid-blue line) and the estimated signal (dashed-red line) using conventional RBF filter. 
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Fig. 3. Error signal between reference and estimated signals by conventional RBF filter (solid-blue line), and the 

error signal between reference and  estimated signals by ARBF network filter (dashed-red line). 

 

Any values of  𝜂𝑓  and 𝜂ℎ satisfying the equation 𝜂𝑓 + 𝜂ℎ=1 will give the same 

minimum error (i.e. 3.2127e-15); so to examine the effect of these values on each of the 

fundamental and harmonic signals, 𝜂𝑓 is changed from 0 to 1, while 𝜂ℎ is selected in such 

a way to satisfy the optimal equation (i.e. 𝜂𝑓 + 𝜂ℎ=1), for example, if 𝜂𝑓= 0.2 then 𝜂ℎ will 

be 0.8. After that, the  FFT is used to calculate the fundamental and harmonics 

component for each value of 𝜂𝑓; the results are shown in Figs. 4 and 5. As the value of 𝜂𝑓 

is increased, the value of fundamental component in the estimated fundamental signal is 

increased and approaches the value of the fundamental component in the simulated 

signal while the fundamental component in the estimated harmonic signal is decreased 

and approaches zero. At the same time when 𝜂𝑓 is increased, the amplitude of harmonic 

component in both of estimated fundamental and estimated harmonic signals is 

increased. The harmonic component in the estimated signal for all the values of 𝜂𝑓 and 𝜂ℎ 

satisfies the equation that gives minimum error (i.e. 𝜂𝑓 + 𝜂ℎ=1) is constant, this means 
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that the harmonic components in the estimated fundamental and estimated harmonic 

signals are out of phase in order for their summation to be constant and approaches the 

harmonic component in the simulated signal. The important remarks which can be 

concluded from Figs. 4 and 5 are that adapting the weight of the estimated fundamental 

signal, will lead to having a harmonic component in this signal, and the same can be 

concluded for the estimated harmonic signal; additionally the value of the 𝜂ℎ has 

increased, causing a fundamental component in the estimated harmonic signal. Fig. 6 

shows the estimated fundamental components by conventional RBF (red line) and ARBF 

network (blue line), when 𝜂𝑓=0.8 and 𝜂ℎ=0.2. It is clear that the estimated fundamental 

component by ARBF network has harmonics components. 
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Fig. 4. Fundamental component in the estimated fundamental signal (red line) and in the harmonic estimated 

signal (green line) versus 𝜂𝑓; 𝜂ℎ is selected to satisfy 𝜂𝑓 + 𝜂ℎ=1. 
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Fig. 5. Harmonic component in the estimated fundamental signal (red line) and in the estimated harmonic signal 

(green line) versus 𝜂𝑓; 𝜂ℎ is selected to satisfy 𝜂𝑓 + 𝜂ℎ =1. 
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Fig. 6. Estimated fundamental component by conventional RBF (red line) and the estimated fundamental signal 

using ARBF network (blue line) 𝜂𝑓=0.8 and 𝜂ℎ =0.2. 

 

Hence, the weight vectors are adapted to minimize the error between the estimated 

and the reference signals. This goal was achieved by using LMSE method, and there is no 

restriction inside the adapting process to guarantee that the fundamental signal will 

have only the fundamental component and the harmonic signal will have only the 

harmonic component. 

For that reason, the adapted method should be modified to minimize the error 

between the estimated signal and the reference signal in one hand and to minimize the 

difference between the estimated fundamental and the estimated harmonic components 

with the reference fundamental and harmonic components in the other hand. 

5. UPDATING FUNDAMENTAL COMPONENT USING FFT 

While the conventional RBF network filter has an advantage (the estimated 

fundamental signal is pure and no other components (harmonics) are included in it), it 

still has a huge error between the estimated and reference signals. On the other hand, the 

ARBF reduces the total error, but the estimated fundamental signal is contaminated with 

harmonics contents. So, to get a pure fundamental component, a modified ARBF 

network is proposed as illustrated in Fig. 7. The updating process is changed in the 

proposed network. This change is done by multiplying the weight vector, related 

fundamental component, by a factor to have the exact fundamental magnitude of the 

reference signal. At the same time, this change will ensure that the estimated 

fundamental component will be pure and will not have any harmonics contents. 

The multiplying factor (J) - which will be used to update the weight vector (𝑊𝑓) - 

can be calculated based on FFT algorithm. The FFT algorithm will be used to determine 

the amplitude of the fundamental component in the reference signal. On the other hand, 

the harmonics weight vector (𝑊ℎ) can be updated using Eq. (7), where 𝜂ℎ and 𝜂𝑓 are 

chosen to be 1 and zero, respectively. These values are chosen to obtain minimum total 

error between the reference and estimated signals. 
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The weight vector (𝑊𝑓), will be updated as: 

 𝑊𝑓(𝑛𝑒𝑤) = 𝐽 ∗ 𝑊𝑓(𝑜𝑙𝑑) 

where 𝐽 is a multiplication factor that equals the ratio between the magnitude of the 

fundamental components in the reference and estimated signals, where both magnitudes 

can be found using FFT. The sampled data - representing one cycle length - is used to 

calculate the fundamental magnitudes. The FFT is continuously founded with the latest 

sampled data. 
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Fig. 7. The proposed ARBF network using FFT. 

 

To validate the proposed algorithm, the performance of the proposed ARBF filter 

is compared with conventional RBF filter. First, 𝜂ℎ is chosen as 0. Fig. 8 shows the 

performance of the two algorithms to track the fundamental amplitude of the 

reference signal. It is clear that the proposed ARBF filter, based on the scaling technique, 

has better performance. It can estimate the amplitude of the fundamental component 

with a small margin of error, compared with the conventional RBF filter. On the other 

hand, Fig. 9 shows the total error, for the proposed algorithm, between the estimated 

signal and the reference signal. The error between the two signals is high. This is 

because of the effect of not updating the weight vector of the harmonics when choosing 

𝜂ℎ equal to zero. This proves that the proposed algorithm can estimate only the 

fundamental component, without the need to have a good estimation of the harmonics 

content in the signal. Now, to prove that this algorithm can have good estimation for 

both components (fundamental and harmonics), let 𝜂ℎ = 1 and update the fundamental 

component based on FFT scaling. Figs. 8 and 10 show that the performance of proposed 

ARBF filter is not affected by changing 𝜂ℎ. The fundamental component in both cases is 

the same. However, when looking at Figs. 9 and 11 that depict the total error for the 

proposed algorithm when 𝜂ℎ =0 and 𝜂ℎ =1, we see that the total error between the 

estimated and reference signals is reduced impressively by choosing 𝜂ℎ =1. 
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Fig. 8. Fundamental amplitude of the simulated signal (blue line), estimated fundamental signal by conventional 

RBF (red line) and estimated fundamental signal by scaled ARBF network based on FFT (green line) for 𝜂ℎ= 0. 
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Fig. 9. Total error between the simulated signal and the estimated signal by scaling ARBF network  

using FFT for 𝜂ℎ=0. 
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Fig. 10. Fundamental amplitude of the simulated signal (blue line), estimated fundamental signal by conventional 

RBF (red line) and estimated fundamental signal by scaled ARBF network based on FFT (green line) for 𝜂ℎ = 1. 
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Fig. 11. Total error between the simulated and the estimated signals by scaling ARBF network using FFT 

for 𝜂ℎ = 1. 

6. SCALING FUNDAMENTAL WEIGHT VECTOR BASED ON LMSE METHOD 

In the conventional RBF filter, the estimated fundamental signal (YFest) always has 

a signal with the same frequency of the fundamental signal (YFsignal), but differs in 

magnitude; so the weight vector in this case must be scaled to modify the magnitude of 

YFest as it is suggested in the previous section.  

𝑊𝑓 = 𝐽 ∗ 𝑊𝑓 

where J is a scaling coefficient. 

J must be selected in such a way that, the error between of YFest and YFsignal is minimum 

𝑦ℎ(𝑘) = 𝑊ℎ𝛷(𝑘)                                                                                         (11) 

𝑦𝑓(𝑘) = 𝑗𝑊𝑓𝛷(𝑘)                                         (12)  

and the estimated output of ARBF is 

𝑦𝑒𝑠𝑡(𝑘) = 𝑊ℎ𝛷(𝑘) + 𝑗𝑊𝑓𝛷(𝑘)                                                                               (13) 

The value of J can be modified based on LMSE method, the difference now, that 

the weight vector of the fundamental signal is not updated as it was done in Eq. (8). The 

fundamental component is now scaled, as shown in Fig. 12 and Eq. (12) to ensure that all 

the time the weight vector is only having the fundamental component, 

𝐽 = 𝐽 + 𝜇𝐽𝛷(𝑘)𝑊𝑓𝐸(𝑘)                                                                                          (14) 

𝑊ℎ = 𝑊ℎ + 𝜇ℎ𝛷(𝑘)𝐸(𝑘)                                                                                          (15) 

where 

𝐸(𝑘) = 𝑌𝑠𝑖𝑔 − 𝑌𝑒𝑠𝑡                                                                                                                          (16) 

 𝜇𝐽 = 𝜂𝐽
1

𝜆1𝑚𝑎𝑥
 

𝜆1𝑚𝑎𝑥 is the greatest eigenvalue of autocorrelation matrix 𝑅1 where: 

𝑅1 = 𝐸[𝛷(𝑘)𝑊𝑓(𝛷(𝐾)𝑊𝑓)𝐻]                                                                                        (17) 

Let us first apply this method for a signal with known fundamental and harmonic 

components. For example, let the signal equals: 𝑦(𝑡) = 700 𝑐𝑜𝑠( 120𝜋𝑡) + 100 𝑠𝑖𝑛( 600𝜋𝑡), the 

fundamental component of this signal is 700 cos(120𝜋𝑡) and the harmonic component is          
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100 sin(600𝜋𝑡). The reason for selecting such system is that it has first and fifth order 

harmonics as the simulated signal, but the simulated signal has a variable magnitude. 

The fundamental component is scaled every sample as described in this section. 

Fig. 13 shows YFsignal (blue line), YFest of the conventional RBFN filter (red line) and the YFest 

of the scaled adapting RBFN, 𝜂𝐽 is chosen to be 1. The result shows that the scaled YFest is 

closer to YFsignal, the difference between YFsignal and YFest of the conventional filter (red line), 

and the difference between YFsignal and YFest of the scaled adapted filter (green line) is 

shown in Fig. 14. It is clear in this figure, that the difference between the estimated 

fundamental using scaled adaptive RBFN and the reference signal is reduced 

significantly. The total signals, including fundamental and the harmonic components, 

i.e., the conventional RBFN signal (red line) and the scaled adapting RBFN signal (green 

line) are shown in Fig. 15. 
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Fig. 12. The proposed ARBF network using LMSE. 
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Fig. 13. Fundamental components of the  signal (blue line),  of the conventional RBFN filter ( red line) and of the 
scaled ARBF network filter (green line). 
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Fig. 14. Error on the fundamental signal using conventional RBFN filter (red line) and using scaled ARBF 

network (green line). 
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Fig. 15. Total signal (including fundamental and harmonic components) of the synthesis signal (blue line), 

conventional RBFN (red line) and scaled adapting RBFN (green line). 

 

Now, let us return to the simulated and scaled signals, with focus only on the 

fundamental component. Since the fundamental component of this signal is unknown, 

we will use the FFT to analyze the result. Fig. 16 shows the fundamental component 

using FFT every cycle, the simulated fundamental component (blue line), the 

conventional RBFN (red line) and scaled adapting RBFN (green line). The scaled 

adapting RBFN filter has fundamental component closer to the simulated signal 

compared to the conventional RBFN filter. The total signal includes both fundamental 

and harmonic components as shown in Fig. 17. The difference between the estimated 

signal using scaled adapting RBFN and the simulated signal is still obvious since the 

fundamental component is the only component being adapted, which means that there 

is a need to adapt the harmonic component to reduce the total error between the 

estimated signal and the input signal. 
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The harmonic component will be adapted in the same way as described in Eq. (7). 

The results of adapting both the fundamental and harmonic components are shown in 

Figs. 18 and 19, respectively. Both of the fundamental signal and the harmonic 

component of the scaled adapting RBFN filter (green line) are closer to the simulated 

signal (blue line) compared to the conventional RBFN (red line). 

The difference between the simulated signal and the scaled adapting RBFN filter 

(green line) and the difference between the simulated signal and the conventional RBFN 

(red line) are shown in Fig. 20. It is clear that the estimated signal using scaled adapting 

RBFN filter - compared to the conventional RBFN filter - has better estimation of the 

fundamental component, harmonic component and total estimating signal. 
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Fig. 16. Magnitude of the fundamental component using FFT of the simulated signal ( blue line), conventional 

RBFN (red line) and scaled adapting RBFN (green line). 
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Fig. 17. Total signal (including fundamental and harmonic components) of the simulated signal (blue line), 

conventional RBFN (red line) and scaled adapting RBFN (green line). 
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Fig. 18. Magnitude of the fundamental component using FFT of the simulated signal (blue line), conventional 

RBFN (red line) and scaled adapting RBFN (green line), when adapting both of the fundamental and       
harmonics components. 
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Fig. 19. Magnitude of the 5th harmonic component using FFT of the simulated signal ( blue line), conventional 

RBFN (red line) and scaled adapting RBFN (green line),when both of the fundamental and harmonics 
components are adapted. 
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Fig. 20. Error between the simulated signal and the signal using conventional RBFN filter ( red line) and the signal 
using scaled ARBF network (green line), when both of the harmonic and fundamental components are adapted. 
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7. CONCLUSIONS 

Conventional RBF network and ARBF network were used to infer the fundamental 

and harmonics content for grid current drawn by nonlinear load. One of the most 

important parameters that govern the performance of the ARBF network is the learning 

rate. The learning rates for the ARBF network were further investigated to reduce the 

system total error. A detailed analysis showed a minimum total error between the 

estimated signal and the input signal; but this did not imply that the individual ARBF 

network outputs have also minimum error. This is because updating the learning rate 

for the fundamental component might affect the estimated signals and the fundamental 

component will have harmonics contents. 

Updating of the fundamental component - for the ARBF network weights - was 

achieved in two different techniques; one is based on the FFT and the other is based on 

the LMSE. The learning rate of the harmonics content was updated using LMSE. The 

results showed that both methodologies can be effective in enhancing the system 

accuracy. Also, the results showed that the proposed algorithm can provide better 

performance compared to the conventional RBF network. WE hope that the proposed - in 

this work techniques - can be of help in the design and implementation of signal 

processing and control systems. 
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